* Step 1: DependencyPairs WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            gcd(x,0()) -> x
            gcd(0(),y) -> y
            gcd(s(x),s(y)) -> if(<(x,y),gcd(s(x),-(y,x)),gcd(-(x,y),s(y)))
        - Signature:
            {gcd/2} / {-/2,0/0, c_1()
          gcd#(0(),y) -> c_2()
          gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            gcd#(x,0()) -> c_1()
            gcd#(0(),y) -> c_2()
            gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
        - Weak TRS:
            gcd(x,0()) -> x
            gcd(0(),y) -> y
            gcd(s(x),s(y)) -> if(<(x,y),gcd(s(x),-(y,x)),gcd(-(x,y),s(y)))
        - Signature:
            {gcd/2,gcd#/2} / {-/2,0/0, c_1()
          gcd#(0(),y) -> c_2()
          gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
* Step 3: Trivial WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            gcd#(x,0()) -> c_1()
            gcd#(0(),y) -> c_2()
            gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
        - Signature:
            {gcd/2,gcd#/2} / {-/2,0/0, c_1()
             
          
          2:S:gcd#(0(),y) -> c_2()
             
          
          3:S:gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
             
          
        The dependency graph contains no loops, we remove all dependency pairs.
* Step 4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {gcd/2,gcd#/2} / {-/2,0/0,